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a b s t r a c t

In this paper, we study a logistics network design problem with vendor managed inventory in which

the company is in charge of managing inventory for its downstream warehouses and retailers, and can

choose whether to satisfy each retailer’s demand. The problem incorporates the location, transporta-

tion, pricing, and warehouse-retailer echelon inventory replenishment decisions. Traditionally, these

decisions are made separately. We formulate the problem as a set-packing model and solve it using

branch-and-price. The pricing problem that arises from each iteration of the column generation

procedure is an interesting nonlinear IP problem. We show the pricing problem can be solved in

Oðn2 log nÞ time for each warehouse, where n is the number of retailers. The computational results shed

insights on the benefits that the integrated approach can achieve significant profit improvement. The

computational results also highlight the efficiency of the solution algorithm.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Vendor managed inventory (VMI) is an effective supply chain
planning technique that aims at reducing logistics cost and
improving service by coordinating the operations of different
logistical entities across the supply chain. Traditionally, each
logistical entity involved in the supply chain manages its own
inventory independently. By centralizing the inventory control
and coordinating the multi-echelon inventory replenishment
under VMI, the system-wide logistics cost can be significantly
reduced and the service level can be improved. As shown by
Simchi-Levi et al. (2003), Ballou (2004), and Yang et al. (2010), a
unified systems approach is required to successfully implement
VMI, which can help effectively integrate the supplier, its down-
stream warehouses and retailers so that the product is produced
and distributed at the right quantities, to the right locations, and
at the right time. Motivated by this recent popular supply chain
initiative — vendor managed inventory, in this paper, we study a
logistics network design problem integrating multi-echelon inven-
tory management under the VMI framework in which the supplier
manages the inventory of a single product for its downstream
warehouses and retailers. Under this VMI framework, the system-
wide inventory, including the inventory maintained at both ware-
houses and retailers, is owned by the supplier. The supplier is the
ll rights reserved.
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sole decision maker who is in charge of the warehouse-retailer
echelon inventory replenishment, the transportation of the pro-
duct from it to the warehouses and from the warehouses to the
retailers, and the price of the product. The warehouse-retailer
echelon inventory is owned by the supplier until it is sold. The
goal of the supplier is to maximize the total profit.

A supply chain distribution network’s physical structure can
substantially affect its performance and profit margin. Most
existing research on supply chain network design pursues a
cost-minimization objective and tries to satisfy all the demands.
However, the additional revenue generated from serving some
retailers could be much lower than the cost associated with
serving them. Thus, trying to satisfy all the retailers’ demands
might not give us the highest profit. As shown by Shen (2006), it
could be more profitable for a company to lose some potential
demands to competitors. It is difficult to determine whether it is
profitable to serve each individual retailer a priori. Thus, we
intend to propose a logistics network design model that can help
simultaneously determine the location, warehouse-retailer
assignment, warehouse-retailer echelon inventory replenishment,
sale price, and which set of retailers to serve. The problem can be
described as follows. We consider a company that produces a
single product in a production site. We are given a set of retailers
each of which faces a deterministic demand at a constant rate. We
are also given a set of potential warehouse locations and each
warehouse is assumed to be uncapacitated. The product will be
shipped from the production site to certain retailers via some
selected warehouses. The company wants to determine (i) the
number and locations of the warehouses to open and the retailers
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to serve, (ii) the retailer assignments, (iii) the warehouse-retailer
echelon inventory replenishment policy, and (iv) the sale price of
the product associated with each warehouse located, so as to
maximize the total profit which equals to the total revenue minus
the total cost. The cost components include the warehouse
establishing and operating cost, the warehouse-retailer echelon
inventory related cost, and the shipment cost from the production
site to the warehouses open and from each open warehouse to
respective retailers served. The cost of establishing and operating
a warehouse is fixed, which is assumed to be independent of the
number of retailers assigned to that warehouse.

Comparing with other logistics network design models in the
literature, the novelties of our model lie in the following three
aspects. First, it brings the VMI concept into logistics distribution
network design with a profit-maximizing objective. Second, it
allows the supplier to decide whether to serve each retailer, i.e.,
the supplier can choose the set of retailers to serve within the
multi-echelon inventory management context. This gives rise to a
set-packing profit-maximizing model. It is unlike other traditional
multi-echelon logistics network design models which pursue a
cost-minimizing objective and try to satisfy all the demands.
Third, we use extensive computational experiments to demon-
strate the potential practical impact of integrated decision-making
by comparing the solutions obtained from our model with the
traditional sequential decision-making process. The average ben-
efit ranges from 10.4% to 21.7% in terms of the total profit. The
computational results also shed insights on the benefits of our
model with the supplier having retailer-serving flexibility over the
traditional model that requires all the demands should be served.

The rest of this paper is organized as follows. In Section 2, we
review the related literature. In Section 3, we present a set-
packing model with a profit-maximizing objective for our net-
work design problem. In Section 4, we study the solution
procedure which includes the solution to the pricing problem
and a speed up heuristic for column generation. In Section 5, we
present a traditional sequential decision-making approach for the
problem. In Section 6, we report and discuss the computational
results. Finally, we outline a few generalizations of our model and
conclude the paper in Sections 7 and 8, respectively.
2. Literature review

The integrated logistics network design optimization received
increasing attentions in the literature recently. One important
stream of this research focuses on the single-echelon risk-pooling
network design problems with a single supplier and with ware-
houses serving as the intermediate facilities between the supplier
and the retailers, and holding two types of inventory: the working
inventory and the safety stock. Shen et al. (2003) formulate the
uncapacitated risk-pooling network design problem as a set-
covering model and solve it using a column generation approach
when the mean-to-variance ratio of the demand at each retailer is
identical for all retailers. Daskin et al. (2002) solve the same
problem using a Lagrangian relaxation based approach. Shu et al.
(2005) propose an efficient algorithm for the subproblem by
relaxing the assumption on the mean-to-variance ratio being
identical for all retailers and solve the problem using column
generation. Qi et al. (2010) study a similar problem with supply
disruptions. Miranda and Garrido (2006, 2009) and Ozsen et al.
(2008, 2009) study various capacitated risk-pooling network
design models. Sourirajan et al. (2007, 2009) study a more general
risk-pooling network design problem in which the replenishment
lead time is explicitly modeled. They develop a Lagrangian
relaxation based heuristic and a genetic algorithm, respectively,
to solve the problem. Park et al. (2010) study a risk-pooling
network design problem with the consideration of selecting
suppliers and lead times being DC-to-supplier dependent. Shen
(2005), Snyder et al. (2007), and Vidyarthi et al. (2007) study
multi-commodity risk-pooling network design problems. While
the last one considers the selection of suppliers and ignores the
working inventory in the system. Manzini and Bindi (2009) and
Gebennini et al. (2009) continue this line of research by further
considering the production decisions. Shen and Qi (2007) and
Javid and Azad (2010) study the single-echelon risk-pooling
network design problems integrating routing costs. Some other
important single-echelon logistics network design models are
contributed by Candas and Kutanoglu (2007) and Jeet et al.
(2009) for the service parts industry and Lee et al. (2010) for
the sustainable logistics network design.

In another stream of this research, the multi-echelon inventory
replenishment related cost is considered. Teo and Shu (2004)
propose a two-echelon location-inventory distribution network
design problem in which both warehouses and retailers carry
inventory and each retailer faces a deterministic demand at a
constant rate. They solve the problem using column generation.
Üster et al. (2008) study a similar problem in which they assume a
single warehouse is located and the location decision is continuous,
and propose several heuristic algorithms that are both effective and
efficient to tackle it. Keskin et al. (2010) study a stochastic two-
echelon location-inventory distribution network design problem.

The literature on retailer demand selection and profit max-
imization in logistics is also related to our problem, for example,
Bakal et al. (2008), Chahar and Taaffe (2009), Geunes et al. (2004,
2005, 2006, 2011), and Taaffe et al. (2008a,b).

Nevertheless, all the models proposed and studied by the
aforementioned papers either do cost minimization for network
design or ignore the location decision. The literature on profit-
maximizing supply chain network design is rather limited. Zhang
(2001) studies a profit-maximizing location model in which a
single warehouse is located and the price for its product is the
same. It assumes that if the price charged by the supplier is higher
than a customer’s reserve price, the supplier will lose this
customer. The model does not consider any cost terms. In a
recent paper, Shen (2006) presents a profit-maximizing supply
chain design model in which the location, transportation, and
inventory replenishment related costs at the warehouse level are
considered.
3. Model development

In this section, we first define the notations, assumptions, and
then develop a set-packing model for the logistics network design
problem with vendor managed inventory.
3.1. Notations and assumptions

To model the logistics network design problem with vendor
managed inventory we first define the following notations: Sets

I set of the retailers, 9I9¼ n;
W set of the potential warehouse locations, 9W9¼m.

Inputs and parameters

li annual demand rate faced by retailer i for each iA I;
Kw,0 fixed ordering cost incurred by warehouse w every time

it places an order to the supplier for each wAW . It is
independent of the ordering quantity;



J. Shu et al. / Int. J. Production Economics 135 (2012) 754–761756
Ki fixed ordering cost incurred by retailer i every time it
places an order to the warehouse assigned to it for each
iA I. It is independent of the ordering quantity;

hw,0 inventory holding cost rate at warehouse w per unit of
the product per year for each wAW;

hi inventory holding cost rate per unit of the product per
year at retailer i for each iA I;

dw,0 distance from the supplier to warehouse w for wAW;
di,w distance from warehouse w to retailer i for iA I, wAW;
cðdw,0Þ transportation cost per unit of the product shipped from

the supplier to warehouse w for wAW . It is assumed to
be a non-decreasing stepwise function with the increase
of dw,0;

gðdi,wÞ transportation cost per unit of the product charged to
retailer i if the shipment is made from warehouse w. It is
assumed to be a non-decreasing stepwise function with
the increase of di,w;

Fw annual fixed cost of operating warehouse w per year for
each wAW;

vi reserve price of retailer i for each iA I.

Decision variables

Tw,0 inventory reorder interval at warehouse w for each
wAW;

Ti inventory reorder interval at retailer i for each iA I;
pw sale price per unit of the product at the set of retailers

served by warehouse w for each wAW;
xw,S binary variable which equals to 1 if warehouse w is used

to serve retailers in S and no one else; and 0, otherwise.

Under the vendor managed inventory assumption, the com-
pany owns the inventory carried in both the warehouses and the
retailers until it is sold. The company is in charge of managing the
inventory for the warehouses and the retailers served and
designing the corresponding inventory replenishment policy.
We also assume that there is a sale price associated with the
retailers assigned to each warehouse open. Due to the existence of
competition, we assume each retailer holds a reserve price for the
product. We further assume that if the total price of warehouse w

(which equals to the sale price of warehouse w plus the shipment
cost from warehouse w to retailer i) charged to retailer i is higher
than retailer i’s reserve price, i.e., pwþgðdi,wÞ4vi, then the
company will lose retailer i. Thus, we can define (cf. Shen, 2006;
Zhang, 2001):

riðpw,di,wÞ ¼
pwþgðdi,wÞ�cðdw,0Þ, pwþgðdi,wÞrvi,

0, pwþgðdi,wÞ4vi:

(

3.2. Model formulation

With the notations and assumptions summarized in the
previous section, the logistics network design problem with
vendor managed inventory can be modeled as a set-packing
model as follows:

P : max
X

wAW

X
SD I

Rw,Sxw,S

s:t:
X

wAW

X
SD I:iA S

xw,Sr1, 8 iA I,

xw,SAf0;1g, 8 wAW , SD I,

where Rw,S denotes the profit of serving retailers in S using
warehouse w for wAW and SD I. We assume if the supplier
decides to serve a retailer, then it must satisfy all this retailer’s
demand from a warehouse. On the contrary, if a retailer is not
served by the supplier, then the supplier will not serve any of this
retailer’s demand and thus, gain no revenue from it.
Rw,S ¼

P
iA Sriðpw,di,wÞli�Iðw,SÞ�Fw, where Iðw,SÞ denotes the opti-

mal warehouse-retailer echelon inventory cost. According to a
seminal work by Roundy (1985), the cost term Iðw,SÞ can be
approximated within 98% accuracy by

Iðw,SÞ ¼ min
Tw,0 ,Ti 40,iAS

Kw,0

Tw,0
þ
X
iAS

Ki

Ti
þ

1

2

X
iA S

lihiTiþ
1

2

X
iAS

lihw,0½maxðTi,Tw,0Þ�Ti�

 !
,

i.e., Iðw,SÞr Iðw,SÞr1:02Iðw,SÞ. In the rest of this paper, we will
use Iðw,SÞ to approximate the optimum two-echelon inventory
cost function Iðw,SÞ. Thus, we redefine Rw,S �

P
iA Sriðpw,di,wÞ li�I

ðw,SÞ�Fw.
We note that the solution to our problem is a maximum profit

partition of the subset of retailers I into disjoint sets ðS1, . . . ,SkÞ

(i.e., S1 [ S2 [ � � � [ SkD I and Si \ Sj ¼ |,8ia j) together with the
corresponding warehouse assignment ðw1, . . . ,wkÞ. Following the
constraints in the set-packing model, we assume each retailer is
served by at most one open warehouse, i.e., if a retailer is served,
then the single-sourcing requirement is enforced.

This model is clearly NP-hard and contains exponentially
many of variables ð9W929I9

Þ. We can apply a branch-and-price
approach to solve this integer programming problem. Branch-
and-price is commonly used to solve network design problems to
optimality (cf. Andersen et al., 2011). In implementing branch-
and-price to it, column generation is used to solve its linear
programming relaxation in each iteration of the branch-and-
bound procedure. We start each iteration by solving the linear
programming relaxation of ðPÞ with a subset of columns which is
called the restricted master problem. The initial set of columns
should include all singletons. For each column ðw,SÞ, we want to
know whether its reduced cost is non-positive. If the answer is
yes, then the solution of this iteration is optimal to the LP
relaxation of ðPÞ. Otherwise, a column ðw,SÞ with a positive
reduced cost is found; then we add this column to the restricted
master problem solved in the last iteration and start the next
iteration.
4. Solution procedure

We use column generation embedded in a branch-and-bound
procedure to solve problem ðPÞ. In this section, we show how to
efficiently solve the pricing problem, and derive lower and upper
bounds of problem ðPÞ. We also present a variable fixing techni-
que to speed up the algorithm.

4.1. The pricing problem

Let fui,i¼ 1;2, . . . ,9I9g be the optimal dual solution obtained in
one of the iterations of the column generation approach to the
linear programming relaxation of ðPÞ. For each column ðw,SÞ, we
want to know whether the reduced cost Rw,S�

P
iA Sui for each

wAW and SD I is non-positive. For a fixed w, this is equivalent to
checking whether

Pw : max
SD I

X
iAS

riðpw,di,wÞli�Iðw,SÞ�Fw�
X
iAS

ui40,

which we call the pricing problem. We note that the above pricing
problem is significantly different from the one studied in Shen
(2006) due to the multi-echelon inventory cost function involved.
The nonlinear multi-echelon inventory cost component Iðw,SÞ
features the dominant difference in our pricing problem.
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Clearly, ðPwÞ is equivalent to

min
SD I

Iðw,SÞþ
X
iAS

ui�
X
iAS

riðpw,di,wÞlir�Fw:

Let aiðpwÞ � riðpw,di,wÞli�ui. Thus, in order to check whether
ðPwÞ is non-positive, we need to solve

min
SD I

Iðw,SÞ�
X
iAS

aiðpwÞ: ð1Þ

For a fixed pw, (1) can be solved in Oðn log nÞ steps as shown in
Teo and Shu (2004). Let S0 be the optimal solution to (1) for some
fixed pw, and Tn

w,0ðS
0,pwÞ and Tn

i ðS
0,pwÞ (abbreviated by Tn

w,0 and Tn

i ,
respectively) be the corresponding optimal replenishment inter-
val at warehouse w and retailer i, respectively. In the solution to
(1) with a fixed pw, the retailers in S0 can be classified into three
groups by the convexity of (1) and the KKT conditions:
�
 iALw ¼ fi : Tn

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ki=liðhi�hw,0Þ

p
oTn

w,0g if and only ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kiliðhi�hw,0Þ

q
þ

1

2
lihw,0Tn

w,0�aiðpwÞo0; ð2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

�
 iAEw ¼ fi : Tn

i ¼ Tn

w,0 ¼ 2½Kw,0þ
P

iAEw
Ki�=½

P
iAEw

lihiþ
P

iALw
lihw,0�g

if and only if

Ki

Tn

w,0

þ
1

2
lihiT

n

w,0�aiðpwÞo0; ð3Þ
�
 iAGw ¼ fi : Tn

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ki=lihi

p
4Tn

w,0g if and only ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kilihi

p
�aiðpwÞo0; ð4Þ

where Gw [ Lw [ Ew ¼ S0D I.
Teo and Shu (2004) show that in order to use (2)–(4) to check

the membership and obtain S0, we can partition a real line into a
collection of intervals for Tn

w,0. Each interval along this line, say
½a,b�, should satisfy the following properties:
�
 The open interval (a,b) does not contain any of the points
b1

i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ki=liðhi�hw,0Þ

p
and b2

i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ki=lihi

p
for i¼ 1, . . . ,n.
�
 The open interval (a,b) does not contain the roots to the
following linear and quadratic equations in terms of Tn

w,0:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kiliðhi�hw,0Þ

q
þ

1

2
lihw,0Tn

w,0�aiðpwÞ ¼ 0, ð5Þ

to which the roots are given by

ciðpwÞ �
2aiðpwÞ�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kiliðhi�hw,0Þ

p
lihw,0

and

Ki

Tn

w,0

þ
1

2
lihiT

n

w,0�aiðpwÞ ¼ 0 ð6Þ

to which the roots are given by

d1;2
i ðpwÞ �

aiðpwÞ7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaiðpwÞÞ

2
�2lihiKi

q
lihi

,

for i¼ 1, . . . ,n.

Thus, for a fixed pw, (1) can be solved by sorting the positive
values of ðb1

i ,b2
i ,ciðpwÞ,d

1;2
i ðpwÞÞ for all iA I and use these values to

partition a real line into a collection of intervals.
However, pw is also a decision variable in the pricing problem.

Thus,it will not be possible to implement the above procedure for all
values of pw to solve (1) since even a small change of the value of pw

might cause the change of the ordering of ðb1
i ,b2

i ,ciðpwÞ,d
1;2
i ðpwÞÞ. To
avoid this,we need to partition another real line (e.g., G¼ ½0,g�) into
a collection of small intervals for pw. For pw taking any value within
each interval,say ½c,d�,we need to guarantee that the ordering of
ðb1

i ,b2
i ,ciðpwÞ,d

1;2
i ðpwÞÞ does not change. We note that as long as the

ordering of ðb1
i ,b2

i ,ciðpwÞ,d
1;2
i ðpwÞÞ does not change, S0 will not change

and the sets of Gw,Lw, and Ew,and Tn

w,0 can be uniquely determined.
In order to achieve this,each such interval,say ½c,d�,in the collection
must satisfy the following properties:
�
 The open interval (c,d) does not contain any of the points
f i � supfpwAP 9 riðpw,di,wÞ40g for i¼ 1, . . . ,n.

�
 The open interval (c,d) does not contain the roots to the

equations
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kilihi

p
�aiðpwÞ ¼ 0,where we denote the roots to

them by ei for i¼ 1, . . . ,n.

�
 The open interval (c,d) does not contain the roots to the

equations:
J b1

i ¼ cjðpwÞ, b1
i ¼ d1;2

j ðpwÞ, 8i,jA I;
J b2

i ¼ cjðpwÞ, b2
i ¼ d1;2

j ðpwÞ, 8i,jA I;
J ei ¼ cjðpwÞ, ei ¼ d1;2

j ðpwÞ, 8i,jA I;
J f i ¼ cjðpwÞ, f i ¼ d1;2

j ðpwÞ, 8i,jA I;
J ciðpwÞ ¼ d1;2

j ðpwÞ, d1
i ðpwÞ ¼ d2

j ðpwÞ, 8i,jA I;
J ciðpwÞ ¼ cjðpwÞ, d1;2

i ðpwÞ ¼ d1;2
j ðpwÞ, 8i,jA I,ia j.
Let rij denote the roots to the above equations. We solve the above
equations and ignore those rij whose values are non-positive since
pw should be positive. Then, we can partition the real line
according to the positive values of rij, ei, and fi. For ease of
exposition, we relabelled the points rij,ei, and fi as rk so that
rkrrkþ1 for all k¼ 1;2, . . . ,B where Bþ1 denotes the number of
different values of rij,ei,f i, and g.

Proposition 1. The computational complexity of the pricing pro-

blem is Oðn2 log nÞ.

Proof. From the construction above, it is clear that B¼Oðn2Þ.
Thus, implementing the sorting procedure for pw can be executed
in OðB log BÞ ¼ Oðn2 log nÞ time. To summarize, after the execution
of the sorting procedure, we obtain points rk, k¼ 1;2, . . . ,B, with
0rr1rr2r � � �rrBþ1 ¼ g (for guessing pn

w which denotes the
optimal pw to the pricing problem) and for each interval ½rk,rkþ1�,
we can use (2)–(4) to obtain the corresponding S0. Finally, the
pricing problem ðPwÞ is solved by selecting the one with the
minimum objective value.

We have shown that sorting the values of rk requires Oðn2 log nÞ

time. For pw being in each interval, the computational complexity

for solving ðPwÞ is Oðn log nÞ (cf. Teo and Shu, 2004). Totally, there

are OðBÞ ¼ Oðn2Þ intervals for searching for pn
w. Instead of searching

all Oðn2Þ intervals, we can implement a bisectional search proce-

dure which only need to search at most Oðlog BÞ ¼Oðlog nÞ

intervals for pw. Then, the total complexity for searching among

these intervals is Oðnðlog nÞ � ðlog nÞÞ ¼Oðnðlog nÞ2Þ, which is

dominated by the sorting complexity of frk,k¼ 1;2, . . . ,Bg which

is shown to be Oðn2 log nÞ. Thus, the pricing problem can be

solved in Oðn2 log nÞ steps. &

4.2. Speed up the algorithm

In the straightforward implementation of the column genera-
tion algorithm, we need to solve the pricing problem ðPwÞ for each
wAW . This usually results in a slow convergence of column
generation. If we can know in advance that some warehouses will
not open in the optimal solution, then we do not need to solve the
pricing problems associated with these warehouses and those
columns associated with these warehouses can also be removed
from the column generation master LP problem. This will help to
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reduce the solution time significantly. In order to achieve this, we
show how to construct the upper bound and the lower bound
based on Lagrangian relaxation, and the information of the primal
and dual solutions to determine whether a warehouse will open
in an optimal solution early in the column generation procedure.
Let ZIP and ZLP denote the optimal solution to the set-packing
problem and its LP relaxation, respectively. At each iteration of
the column generation procedure, we have a set of dual solutions
fui : iA Ig, a set of feasible LP solution xw,S, and the reduced cost
rw � maxSD IðRw,S�

P
iASuiÞ.

4.2.1. Constructing an upper bound

The Lagrangian dual of the LP relaxation of ðPÞ is

LðlÞ ¼
X

i

liþmax
X

w

X
S

Rw,S�
X
kAS

lk

 !
xw,S

 !
: 1Zxw,SZ0,8 w

( )
:

Therefore, ZIP rminlLðlÞrLðuÞ ¼
P

iuiþ
P

w:rw Z0rw, which gives
rise to an upper bound.

4.2.2. Constructing a lower bound

The speed up technique depends largely on the quality of the
lower bound (denoted as LB) of ZIP. We generate a lower bound by
constructing a feasible IP solution using the following heuristic:

Step 0: Let xn be the optimal LP solution obtained by solving
the problem using a partial set of columns. If xn is integral, then
the solution

P
w,SRw,Sxn

w,S is a lower bound to ZIP. Otherwise, we go
to the next step.

Step 1: Order the retailers in a list according to the non-
decreasing value of the demand.

Step 2: Start from the first retailer (say i) in the list. Do while
the list is non-empty. If for some S and w, iAS and xn

w,S ¼ 1, then
retailer i is served by warehouse w. Otherwise, there exists S and
T, both of which contain i, and w and w0, such that xn

w,S40 and
xn

w0,T 40. We serve i using the warehouse that will lead to the
most total profit, and remove retailer i from the list.

In this way, we can generate a feasible IP solution to the set-
packing model. We can use this solution as a bound to perform
variable fixing as follows. Let wn be a warehouse such that rwn o0.
If
P

iuiþ
P

w:rw Z0rwþrwn oLB, then warehouse wn will never
open.
5. A sequential decision-making approach

In this section, we outline a sequential decision-making model for
comparing its solution with the one obtained by the integrated
model proposed in Section 3. The traditional sequential decision-
making approach for this problem follows a two-phase decision-
making process. It typically makes the strategic location decision first
followed by the operational inventory decision. In our problem
framework, we first determine the number and locations of the
warehouse to open, the warehouse-retailer assignments, and the sale
price of the product for each open warehouse. Then, we determine
the multi-echelon inventory replenishment policies for the open
warehouses and the retailers assigned to them given the location and
warehouse-retailer assignment decisions made in phase one. In the
first phase, by ignoring the inventory-related cost components, we
can formulate the problem as

S1 : max
X

wAW

X
SD I

R0w,Sxw,S

s:t:
X

wAW

X
SD I:iA S

xw,Sr1, 8 iA I,

xw,SAf0;1g, 8 wAW , SD I,

where R0w,S ¼
P

iASriðpw,di,wÞli�Fw denotes the profit of serving
retailers in S using warehouse w for wAW and SD I. The set-packing
model ðS1Þ is clearly a special case of ðPÞ, which can be solved
similarly using branch-and-price.

In the second phase, we determine the multi-echelon inven-
tory replenishment policies for the warehouses open and the
retailers assigned to them in the network constructed by the
phase one solution (xw,S). Let S be the set of retailers served
obtained by solving ðS1Þ and O be the set of warehouses opened in
the first phase. We can then formulate the second phase problem
as follows:

S2 : min
X

wAO

X
SAS

Iðw,SÞ �
X
wAO

X
SAS

min Iðw,SÞ:

We note that ðS2Þ is a separable minimization problem as it can be
decomposed for each pair of ðw,SÞ which can be solved efficiently
(cf. Roundy, 1985).

After ðS1Þ and ðS2Þ are solved, the total profit obtained from the
sequential decision-making process equals to the objective value
of ðS1Þ minus the objective value of ðS2Þ. In the next section, we
present the computational results and demonstrate the effective-
ness of the integrated decision-making by comparing the solu-
tions obtained from the integrated model and the sequential
decision-making model.
6. Computational results

In this section, we summarize the computational results with
the models outlined in the previous sections. All the instances
were solved on a HP P4-2.8G workstation running the windows
XP operating system. The reported computational times exclude
input times. CPLEX 10.0 Solver is used to solve the test instances.

All the problem instances are randomly generated. For each
retailer i, Ki,hi, and vi are randomly generated in ð0;50� and li is
randomly generated in ð0;500�. For each warehouse w, Kw,0 is
generated uniformly in ðmaxiKi,100�; hw,0 is generated uniformly
in ð0,minihiÞ; and Fw is generated uniformly in ½50;100�. The
location of the warehouses and retailers are uniformly distributed
over ½0;2000� � ½0;2000�. Moreover, we assume that the per unit
transportation cost is a stepwise function of the Euclidean
distance and has the following structure:

cðdw,0Þ ¼

3 if 0odw,0r100,

6 if 100odw,0r500,

9 if 500odw,0r1000,

12 if 1000odw,0r1500,

15 if 1500odw,0r2000,

8>>>>>><
>>>>>>:

gðdi,wÞ ¼

10 if 0odi,wr100,

15 if 100odi,wr500,

20 if 500odi,wr1000,

25 if 1000odi,wr1500,

30 if 1500odi,wr2000:

8>>>>>><
>>>>>>:

The above transportation cost structures explicitly model the
different quantity discount schemes. Practically, large volume
shipments from the production site to the warehouses are
delivered via the truckload transportation mode. In contrast, the
relative small volume shipments from a warehouse to a retailer
are usually made under the less-than-truckload mode. The per
unit transportation cost under the less-than-truckload mode is
higher than it under the truckload mode.

For each of the tested instances, we first solve the linear
programming relaxation of the set-packing model ðPÞ via the
column generation approach. Then, we solve the pricing problem
Pw for each w using the approach outlined in Section 4. We add
the column with positive reduced cost to the master problem and



Table 3
Computational results for varying inventory cost factor.

Input Output Comparison

Inventory

cost factor a
Location cost

factor b
# W/H

open

# retailers

served

Objective

value ZI

Serve

all ZA

D
(%)

1 1 8 38 159,762 147,240 8.5

3 1 7 36 154,702 137,512 12.5

5 1 7 36 140,737 121,517 15.8

10 1 5 35 131,847 111,357 18.4

15 1 4 34 121,922 100,573 21.3

20 1 2 34 109,021 88,204 23.6

Table 4
Computational results for varying location cost factor.

Input Output Comparison

Inventory

cost factor a
Location cost

factor b
# W/H

open

# retailers

served

Objective

value ZI

Serve

all ZA

D
(%)

1 5 8 38 150,562 145,502 3.4

1 10 8 37 148,432 137,503 7.9

1 30 7 36 140,035 126,011 11.1

1 50 6 36 128,501 114,398 12.3

1 80 4 35 115,503 102,384 12.8

1 100 4 35 103,011 89,892 14.5
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start the next iteration. The initial set of columns contains all
singletons. Tables 1 and 2 report the CPU time (in seconds)
needed, the number of warehouses open, and the number of
columns generated for different input sizes of the distribution
network design instances ranging from three potential warehouse
locations and 10 retailers to 25 potential warehouse locations and
100 retailers without implementing variable fixing and 10 poten-
tial warehouse locations and 30 retailers to 50 potential ware-
house locations and 200 retailers with implementing variable
fixing. We run each size of the instances 20 times and report the
average values (rounded to the nearest integer). The columns
titled ‘‘# W/H open’’, ‘‘# Retailers served’’, ‘‘# Columns’’, and ‘‘CPU
time(s)’’ denote the number of warehouses open, the number of
retailers served, the total number of columns added into the
master problem during the solution process, and the average CPU
time in seconds respectively. From Tables 1 and 2, we can see that
variable fixing can help significantly reduce the solution time, e.g.,
for 25 locations and 100 retailers instance, the average CPU time
taken by implementing variable fixing is only around 31% of that
without implementing it. With the help of variable fixing, we are
able to solve the problem with up to 50 potential warehouse
locations and 200 retailers in 26 min in average.

We next fix the input size of the instances generated at 20
potential warehouse locations and 50 retailers, and compare our
profit-maximizing model in which we can choose whether to
serve each retailer (the set-packing model) with the traditional
supply chain design model in which all the retailers should be
served (the associated set-covering model). Tables 3 and 4 high-
light the results of our computational study. In order to show how
the inventory cost and the location cost affect the number and
locations of the warehouses open and the number of retailers
served, we use aIðw,SÞ and bFw to substitute Iðw,SÞ and Fw in the
original model, respectively, in which a is the inventory cost
factor and b is the location cost factor. We use ZI to denote the
optimal objective value of the integrated profit-maximizing
model and ZA to denote the optimal objective value of the
associated set-covering model in which all the retailers are
served. The column titled ‘‘D (%)’’ denotes the profit improvement
of implementing the integrated profit-maximizing model over the
associated set-covering model in which all the retailer are served,
Table 1
Computational results without variable fixing.

Input Output

# W/H # retailers # W/H open # retailers served # columns CPU time (s)

3 10 2 6 30 4.9

5 20 3 15 91 19.2

10 30 5 22 354 112.4

15 50 8 40 1210 368.4

20 80 8 64 4369 824.2

25 100 10 81 8535 1526.9

Table 2
Computational results with variable fixing.

Input Output

# W/H # retailers # W/H open # retailers served # columns CPU time (s)

10 30 4 23 176 57.2

15 50 6 42 223 89.5

20 80 8 59 416 205.3

25 100 8 85 907 473.6

25 150 10 118 1135 615.9

50 200 16 142 2445 1536.3
and it is defined as

Dð%Þ ¼
ZI�ZA

ZA
� 100:

From Tables 3 and 4, we observe that both the number of
warehouses open and the number of retailers served are non-
increasing with the increase of the inventory cost factor a and the
location cost factor b, i.e., when either the inventory or location
cost increases, both the number of warehouses open and the
number of retailers served tend to decrease. We also observe that
the profits obtained from the model with the flexibility to choose
which set of retailers to serve are higher than those obtained from
the covering model in which all the retailers must be served for
all test instances. Furthermore, based on the randomly generated
inputs, we can observe that the profit improvement is more
significant when the inventory cost dominates the location cost
in the system and the inventory cost tends to have more impact
on the profit improvement.

In the rest of this section, we compare the solutions obtained
from our integrated profit-maximizing model and the traditional
sequential-decision making model. Table 5 summarizes the com-
putational results obtained from solving the integrated profit-
maximizing model and the non-integrated model with different
input sizes. We use ZS to denote the optimal profit obtained from
the traditional sequential decision-making procedure, which
equals to the optimal objective value of model ðS1Þ minus the
optimal objective value of model ðS2Þ. The column titled ‘‘D0 (%)’’
denotes the profit improvement of implementing the integrated
profit-maximizing model over the traditional non-integrated
approach and it is defined as

D0ð%Þ ¼
ZI�ZS

ZS
� 100:

From Table 5, we can observe that the number of warehouses
open and the number of retailers served by the integrated model



Table 5
Integrated vs. non-integrated model.

Input Output of integrated model Output of non-integrated model Comparison

# W/H # re # W/H open # re served Objective value ZI # W/H open # re served Objective value ZS D0 (%)

5 10 2 6 41,429 3 8 37,526 10.4

5 20 3 15 80,017 4 18 71,893 11.3

5 30 4 20 95,716 5 25 85,460 12.1

5 40 4 27 124,637 5 34 109,715 13.6

5 50 5 38 161,009 5 45 139,886 15.1

10 20 4 17 75,939 6 19 67,863 11.9

10 40 5 26 111,939 8 38 98,624 13.5

10 60 6 45 202,858 8 56 175,179 15.8

10 80 7 59 246,284 9 73 211,040 16.7

10 100 8 70 274,637 9 92 234,732 17.0

20 20 4 16 67,956 5 18 60,298 12.7

20 40 6 31 125,456 8 39 109,952 14.1

20 60 8 52 171,187 10 57 147,447 16.1

20 80 8 64 289,576 11 71 247,078 17.2

20 100 10 80 370,341 11 91 304,306 21.7
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is consistently smaller than those obtained from the non-inte-
grated model. The integrated model outperforms the sequential
decision-making model by more than 10% in terms of the total
profit. The profit improvement ranges from 10:4% to 21:7% and
tends to increase when the input instance size becomes larger.
7. Extension and generalization

In this section, we describe some extensions and general-
izations of our model by introducing an additional cost term
Hðw,SÞ to capture more realistic situations, and show that the
associated pricing problem can still be solved efficiently.

7.1. Business volume dependent locating and operating cost at the

warehouse

In our model setting, we have assumed that there is only a
fixed locating and operating cost Fw associated with warehouse w.
In order to model a more general and realistic setting, we can
employ a cost term Hðw,SÞ to incorporate costs that are dependent
on the total annual business volume served by warehouse w. In
this case, we may define

Hðw,SÞ ¼ gw

X
iA S

li

 !
,

where gw is a warehouse-dependent cost function, which we may
assume to be concave as in Shen (2006).

7.2. Routing cost

In our model setting, we have assumed that all the outbound
logistics shipments are made directly from each warehouse open
to each retailer served which is the same as the shipment pattern
in the traditional uncapacitated facility location problem. By
considering a more general and realistic situation and assuming
each warehouse sends a vehicle to visit the retailers served at
some fixed frequency, we may define a concave function Hðw,SÞ to
capture the routing cost. Shen and Qi (2007) show that Hðw,SÞ is a
function of the number of visits per year, the number of retailers
served, the capacity of the vehicle employed, and the distance
between warehouse w and each retailer i served. They use
simulation to show that this concave function is a very good
approximation to the routing cost.
7.3. Stochastic demand

When demand is stochastic and independent (e.g., we know
that each retailer i faces a demand with mean li and variance si),
both warehouses and retailers need to maintain a suitable level of
safety stocks to meet the specified service level promised to
customers. Let Lw,0 denote the replenishment lead time from the
supplier to warehouse w. Then, Lw,0

P
iA Ss2

i is the total variance of
lead time demand experienced by warehouse w. Let kw,0 be a
controlling parameter which corresponds to the service level.
Similarly, let Lw,i denote the replenishment lead time from ware-
house w to retailer i and ki be a controlling parameter that
corresponds to the service level. With these notations, we can
approximately measure the safety stock cost associated with
warehouse w serving retailers set S by

hw,0kw,0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lw,0

X
iAS

s2
i

r
þ
X
iA S

hikisi

ffiffiffiffiffiffiffiffi
Lw,i

q
,

where the first term denotes the safety stock cost incurred by
warehouse w and the second term represents the safety stock cost
incurred by retailers in S. We note that the second term is
separable in i. In our model, we can merge this term into the
transportation cost term. For ease of exposition, we can thus
ignore this term. Thus, we can define the system safety stock costs
due to demand uncertainty as

Hðw,SÞ ¼ hw,0kw,0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lw,0

X
iAS

s2
i

r
:

In the aforementioned three cases, the pricing problem
becomes

min
SD I

Iðw,SÞþHðw,SÞ�
X
iA S

aiðpwÞ:

The pricing problem can be efficiently solved for any fixed pw (cf.
Romeijn et al., 2007). By allowing pw to change, it is not difficult to
see we can apply the similar idea developed in Section 4 to obtain
the optimal solution.
8. Conclusions and future research

In this paper, we study a logistics network design problem
with vendor managed inventory in which the company is in
charge of managing inventory for its downstream warehouses
and retailers, and can choose whether to fulfill each retailer’s
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demand. We formulate the problem as a set-packing model and
solve it using branch-and-price. The pricing problem that arises
from each iteration of the column generation procedure is an
interesting nonlinear IP problem. We propose an efficient algo-
rithm which runs in Oðn2 log nÞ time to tackle it. Furthermore, we
propose a heuristic to speed up the column generation procedure.
We use extensive computational experiments to compare the
solution of our integrated decision-making model with the one of
the traditional sequential decision-making model. The average
benefit ranges from 10.4% to 21.7% in terms of the total profit. The
computational results also shed insights on the benefits of our
model with the supplier having retailer-serving flexibility over
the traditional model that requires all the demands should be
served.

In the literature, most of the integrated supply chain network
design models assume one level of warehouses. Practically, we
might have two or even more level of facilities. Also currently, we
can only deal with medium size problem instances. Therefore, we
want to explore the possibility of designing efficient approxima-
tion algorithms for it and its variants (cf. Du et al., 2010; Du et al.,
this issue; Xu and Du, 2006; Xu and Yang, 2009; Xu and Zhang,
2008; Zhang, 2006), and being able to solve large-scale instances
of the problem. Each of these could be an interesting topic for
further investigation in future research.
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